ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09752
35
14
v1v2 (latest)

Environmental Sound Classification Based on Multi-temporal Resolution CNN Network Combining with Multi-level Features

24 May 2018
Boqing Zhu
Kele Xu
Dezhi Wang
Lilun Zhang
Bo Li
Yuxing Peng
ArXiv (abs)PDFHTML
Abstract

Motivated by the fact that characteristics of different sound classes are highly diverse in different temporal scales and hierarchical levels, a novel deep convolutional neural network (CNN) architecture is proposed for the environmental sound classification task. This network architecture takes raw waveforms as input, and a set of separated parallel CNNs are utilized with different convolutional filter sizes and strides, in order to learn feature representations with multi-temporal resolutions. On the other hand, the proposed architecture also aggregates hierarchical features from multi-level CNN layers for classification using direct connections between convolutional layers, which is beyond the typical single-level CNN features employed by the majority of previous studies. This network architecture also improves the flow of information and avoids vanishing gradient problem. The combination of multi-level features boosts the classification performance significantly. Comparative experiments are conducted on two datasets: the environmental sound classification dataset (ESC-50), and DCASE 2017 audio scene classification dataset. Results demonstrate that the proposed method is highly effective in the classification tasks by employing multi-temporal resolution and multi-level features, and it outperforms the previous methods which only account for single-level features.

View on arXiv
Comments on this paper