ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.10390
11
33

Toward Extractive Summarization of Online Forum Discussions via Hierarchical Attention Networks

25 May 2018
Sansiri Tarnpradab
Fei Liu
K. Hua
ArXivPDFHTML
Abstract

Forum threads are lengthy and rich in content. Concise thread summaries will benefit both newcomers seeking information and those who participate in the discussion. Few studies, however, have examined the task of forum thread summarization. In this work we make the first attempt to adapt the hierarchical attention networks for thread summarization. The model draws on the recent development of neural attention mechanisms to build sentence and thread representations and use them for summarization. Our results indicate that the proposed approach can outperform a range of competitive baselines. Further, a redundancy removal step is crucial for achieving outstanding results.

View on arXiv
Comments on this paper