60
12

Ratio Matching MMD Nets: Low dimensional projections for effective deep generative models

Akash Srivastava
Kai Xu
Abstract

Deep generative models can learn to generate realistic-looking images, but many of the most effective methods are adversarial methods, which require careful balancing of training between a generator network and a discriminator network. Maximum mean discrepancy networks (MMD-nets) avoid this issue using the kernel trick, but unfortunately they have not on their own been able to match the performance of adversarial training. We present a new method of training MMD-nets, based on learning a mapping of samples from the data and from the model into a lower dimensional space, in which MMD training can be more effective. We call these networks ratio matching MMD networks (RM-MMDnets). We train the mapping to preserve density ratios between the densities over the low-dimensional space and the original space. This ensures that matching the model distribution to the data in the low-dimensional space will also match the original distributions. We show that RM-MMDnets have better performance and better stability than recent adversarial methods for training MMD-nets

View on arXiv
Comments on this paper