ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00183
27
370

Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network

1 June 2018
Qiangqiang Yuan
Qiang Zhang
Jie Li
Huanfeng Shen
Liangpei Zhang
ArXivPDFHTML
Abstract

Hyperspectral image (HSI) denoising is a crucial preprocessing procedure to improve the performance of the subsequent HSI interpretation and applications. In this paper, a novel deep learning-based method for this task is proposed, by learning a non-linear end-to-end mapping between the noisy and clean HSIs with a combined spatial-spectral deep convolutional neural network (HSID-CNN). Both the spatial and spectral information are simultaneously assigned to the proposed network. In addition, multi-scale feature extraction and multi-level feature representation are respectively employed to capture both the multi-scale spatial-spectral feature and fuse the feature representations with different levels for the final restoration. The simulated and real-data experiments demonstrate that the proposed HSID-CNN outperforms many of the mainstream methods in both the quantitative evaluation indexes, visual effects, and HSI classification accuracy.

View on arXiv
Comments on this paper