ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00701
11
90

On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks

2 June 2018
Jeremias Sulam
Aviad Aberdam
Amir Beck
Michael Elad
ArXivPDFHTML
Abstract

Parsimonious representations are ubiquitous in modeling and processing information. Motivated by the recent Multi-Layer Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit problem to a multi-layer setting, introducing similar sparse enforcing penalties at different representation layers in a symbiotic relation between synthesis and analysis sparse priors. We explore different iterative methods to solve this new problem in practice, and we propose a new Multi-Layer Iterative Soft Thresholding Algorithm (ML-ISTA), as well as a fast version (ML-FISTA). We show that these nested first order algorithms converge, in the sense that the function value of near-fixed points can get arbitrarily close to the solution of the original problem. We further show how these algorithms effectively implement particular recurrent convolutional neural networks (CNNs) that generalize feed-forward ones without introducing any parameters. We present and analyze different architectures resulting unfolding the iterations of the proposed pursuit algorithms, including a new Learned ML-ISTA, providing a principled way to construct deep recurrent CNNs. Unlike other similar constructions, these architectures unfold a global pursuit holistically for the entire network. We demonstrate the emerging constructions in a supervised learning setting, consistently improving the performance of classical CNNs while maintaining the number of parameters constant.

View on arXiv
Comments on this paper