24
9
v1v2v3v4 (latest)

Precise Runtime Analysis for Plateau Functions

Denis Antipov
Abstract

To gain a better theoretical understanding of how evolutionary algorithms (EAs) cope with plateaus of constant fitness, we propose the nn-dimensional Plateauk_k function as natural benchmark and analyze how different variants of the (1+1)(1 + 1) EA optimize it. The Plateauk_k function has a plateau of second-best fitness in a ball of radius kk around the optimum. As evolutionary algorithm, we regard the (1+1)(1 + 1) EA using an arbitrary unbiased mutation operator. Denoting by α\alpha the random number of bits flipped in an application of this operator and assuming that Pr[α=1]\Pr[\alpha = 1] has at least some small sub-constant value, we show the surprising result that for all constant k2k \ge 2, the runtime TT follows a distribution close to the geometric one with success probability equal to the probability to flip between 11 and kk bits divided by the size of the plateau. Consequently, the expected runtime is the inverse of this number, and thus only depends on the probability to flip between 11 and kk bits, but not on other characteristics of the mutation operator. Our result also implies that the optimal mutation rate for standard bit mutation here is approximately k/(en)k/(en). Our main analysis tool is a combined analysis of the Markov chains on the search point space and on the Hamming level space, an approach that promises to be useful also for other plateau problems.

View on arXiv
Comments on this paper