ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01506
37
126

Attention Based Fully Convolutional Network for Speech Emotion Recognition

5 June 2018
Yuanyuan Zhang
Jun Du
Zirui Wang
Jianshu Zhang
ArXivPDFHTML
Abstract

Speech emotion recognition is a challenging task for three main reasons: 1) human emotion is abstract, which means it is hard to distinguish; 2) in general, human emotion can only be detected in some specific moments during a long utterance; 3) speech data with emotional labeling is usually limited. In this paper, we present a novel attention based fully convolutional network for speech emotion recognition. We employ fully convolutional network as it is able to handle variable-length speech, free of the demand of segmentation to keep critical information not lost. The proposed attention mechanism can make our model be aware of which time-frequency region of speech spectrogram is more emotion-relevant. Considering limited data, the transfer learning is also adapted to improve the accuracy. Especially, it's interesting to observe obvious improvement obtained with natural scene image based pre-trained model. Validated on the publicly available IEMOCAP corpus, the proposed model outperformed the state-of-the-art methods with a weighted accuracy of 70.4% and an unweighted accuracy of 63.9% respectively.

View on arXiv
Comments on this paper