ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01677
9
126

Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching

5 June 2018
S. Tulyakov
A. Ivanov
F. Fleuret
    3DV
ArXivPDFHTML
Abstract

End-to-end deep-learning networks recently demonstrated extremely good perfor- mance for stereo matching. However, existing networks are difficult to use for practical applications since (1) they are memory-hungry and unable to process even modest-size images, (2) they have to be trained for a given disparity range. The Practical Deep Stereo (PDS) network that we propose addresses both issues: First, its architecture relies on novel bottleneck modules that drastically reduce the memory footprint in inference, and additional design choices allow to handle greater image size during training. This results in a model that leverages large image context to resolve matching ambiguities. Second, a novel sub-pixel cross- entropy loss combined with a MAP estimator make this network less sensitive to ambiguous matches, and applicable to any disparity range without re-training. We compare PDS to state-of-the-art methods published over the recent months, and demonstrate its superior performance on FlyingThings3D and KITTI sets.

View on arXiv
Comments on this paper