ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02543
24
20
v1v2v3 (latest)

Grouped Gaussian Processes for Solar Power Prediction

7 June 2018
A. Dahl
Edwin V. Bonilla
ArXiv (abs)PDFHTML
Abstract

We consider multi-task regression models where the observations are assumed to be a linear combination of several latent node functions and weight functions, which are both drawn from Gaussian process priors. Driven by the problem of developing scalable methods for forecasting distributed solar and other renewable power generation, we propose coupled priors over groups of (node or weight) processes to exploit spatial dependence between functions. We estimate forecast models for solar power at multiple distributed sites and ground wind speed at multiple proximate weather stations. Our results show that our approach maintains or improves point-prediction accuracy relative to competing solar benchmarks and improves over wind forecast benchmark models on all measures. At the same time our approach provides better quantification of predictive uncertainties.

View on arXiv
Comments on this paper