ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02658
23
51

Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts

7 June 2018
Y. Sugawara
Sayaka Shiota
Hitoshi Kiya
    SupR
ArXivPDFHTML
Abstract

It is well-known that a number of excellent super-resolution (SR) methods using convolutional neural networks (CNNs) generate checkerboard artifacts. A condition to avoid the checkerboard artifacts is proposed in this paper. So far, checkerboard artifacts have been mainly studied for linear multirate systems, but the condition to avoid checkerboard artifacts can not be applied to CNNs due to the non-linearity of CNNs. We extend the avoiding condition for CNNs, and apply the proposed structure to some typical SR methods to confirm the effectiveness of the new scheme. Experiment results demonstrate that the proposed structure can perfectly avoid to generate checkerboard artifacts under two loss conditions: mean square error and perceptual loss, while keeping excellent properties that the SR methods have.

View on arXiv
Comments on this paper