ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03379
157
9

CS-VQA: Visual Question Answering with Compressively Sensed Images

8 June 2018
Li-Chi Huang
K. Kulkarni
Anik Jha
Suhas Lohit
Suren Jayasuriya
Pavan Turaga
    CoGe
ArXiv (abs)PDFHTML
Abstract

Visual Question Answering (VQA) is a complex semantic task requiring both natural language processing and visual recognition. In this paper, we explore whether VQA is solvable when images are captured in a sub-Nyquist compressive paradigm. We develop a series of deep-network architectures that exploit available compressive data to increasing degrees of accuracy, and show that VQA is indeed solvable in the compressed domain. Our results show that there is nominal degradation in VQA performance when using compressive measurements, but that accuracy can be recovered when VQA pipelines are used in conjunction with state-of-the-art deep neural networks for CS reconstruction. The results presented yield important implications for resource-constrained VQA applications.

View on arXiv
Comments on this paper