ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04441
17
54

Sequence-to-Sequence Learning for Task-oriented Dialogue with Dialogue State Representation

12 June 2018
Haoyang Wen
Yijia Liu
Wanxiang Che
Libo Qin
Ting Liu
ArXivPDFHTML
Abstract

Classic pipeline models for task-oriented dialogue system require explicit modeling the dialogue states and hand-crafted action spaces to query a domain-specific knowledge base. Conversely, sequence-to-sequence models learn to map dialogue history to the response in current turn without explicit knowledge base querying. In this work, we propose a novel framework that leverages the advantages of classic pipeline and sequence-to-sequence models. Our framework models a dialogue state as a fixed-size distributed representation and use this representation to query a knowledge base via an attention mechanism. Experiment on Stanford Multi-turn Multi-domain Task-oriented Dialogue Dataset shows that our framework significantly outperforms other sequence-to-sequence based baseline models on both automatic and human evaluation.

View on arXiv
Comments on this paper