ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04618
22
37

Imperfect Segmentation Labels: How Much Do They Matter?

12 June 2018
N. Heller
Joshua Dean
Nikolaos Papanikolopoulos
ArXivPDFHTML
Abstract

Labeled datasets for semantic segmentation are imperfect, especially in medical imaging where borders are often subtle or ill-defined. Little work has been done to analyze the effect that label errors have on the performance of segmentation methodologies. Here we present a large-scale study of model performance in the presence of varying types and degrees of error in training data. We trained U-Net, SegNet, and FCN32 several times for liver segmentation with 10 different modes of ground-truth perturbation. Our results show that for each architecture, performance steadily declines with boundary-localized errors, however, U-Net was significantly more robust to jagged boundary errors than the other architectures. We also found that each architecture was very robust to non-boundary-localized errors, suggesting that boundary-localized errors are fundamentally different and more challenging problem than random label errors in a classification setting.

View on arXiv
Comments on this paper