ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.05129
20
27

What Is It Like Down There? Generating Dense Ground-Level Views and Image Features From Overhead Imagery Using Conditional Generative Adversarial Networks

13 June 2018
XueQing Deng
Yi Zhu
Shawn D. Newsam
    GAN
ArXivPDFHTML
Abstract

This paper investigates conditional generative adversarial networks (cGANs) to overcome a fundamental limitation of using geotagged media for geographic discovery, namely its sparse and uneven spatial distribution. We train a cGAN to generate ground-level views of a location given overhead imagery. We show the "fake" ground-level images are natural looking and are structurally similar to the real images. More significantly, we show the generated images are representative of the locations and that the representations learned by the cGANs are informative. In particular, we show that dense feature maps generated using our framework are more effective for land-cover classification than approaches which spatially interpolate features extracted from sparse ground-level images. To our knowledge, ours is the first work to use cGANs to generate ground-level views given overhead imagery and to explore the benefits of the learned representations.

View on arXiv
Comments on this paper