ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.06945
13
37

Overlapping Clustering Models, and One (class) SVM to Bind Them All

18 June 2018
Xueyu Mao
Purnamrita Sarkar
Deepayan Chakrabarti
ArXivPDFHTML
Abstract

People belong to multiple communities, words belong to multiple topics, and books cover multiple genres; overlapping clusters are commonplace. Many existing overlapping clustering methods model each person (or word, or book) as a non-negative weighted combination of "exemplars" who belong solely to one community, with some small noise. Geometrically, each person is a point on a cone whose corners are these exemplars. This basic form encompasses the widely used Mixed Membership Stochastic Blockmodel of networks (Airoldi et al., 2008) and its degree-corrected variants (Jin et al., 2017), as well as topic models such as LDA (Blei et al., 2003). We show that a simple one-class SVM yields provably consistent parameter inference for all such models, and scales to large datasets. Experimental results on several simulated and real datasets show our algorithm (called SVM-cone) is both accurate and scalable.

View on arXiv
Comments on this paper