ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07690
9
4

Non-Parametric Calibration of Probabilistic Regression

20 June 2018
Hao Song
Meelis Kull
Peter A. Flach
ArXivPDFHTML
Abstract

The task of calibration is to retrospectively adjust the outputs from a machine learning model to provide better probability estimates on the target variable. While calibration has been investigated thoroughly in classification, it has not yet been well-established for regression tasks. This paper considers the problem of calibrating a probabilistic regression model to improve the estimated probability densities over the real-valued targets. We propose to calibrate a regression model through the cumulative probability density, which can be derived from calibrating a multi-class classifier. We provide three non-parametric approaches to solve the problem, two of which provide empirical estimates and the third providing smooth density estimates. The proposed approaches are experimentally evaluated to show their ability to improve the performance of regression models on the predictive likelihood.

View on arXiv
Comments on this paper