ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07934
50
15
v1v2v3v4 (latest)

A Function Emulation Approach for Doubly Intractable Distributions

20 June 2018
Jaewoo Park
M. Haran
    TPM
ArXiv (abs)PDFHTML
Abstract

Doubly intractable distributions arise in many settings, for example in Markov models for point processes and exponential random graph models for networks. Bayesian inference for these models is challenging because they involve intractable normalising "constants" that are actually functions of the parameters of interest. Although several clever computational methods have been developed for these models, each method suffers from computational issues that makes it computationally burdensome or even infeasible for many problems. We propose a novel algorithm that provides computational gains over existing methods by replacing Monte Carlo approximations to the normalising function with a Gaussian process-based approximation. We provide theoretical justification for this method. We also develop a closely related algorithm that is applicable more broadly to any likelihood function that is expensive to evaluate. We illustrate the application of our methods to a variety of challenging simulated and real data examples, including an exponential random graph model, a Markov point process, and a model for infectious disease dynamics. The algorithm shows significant gains in computational efficiency over existing methods, and has the potential for greater gains for more challenging problems. For a random graph model example, we show how this gain in efficiency allows us to carry out accurate Bayesian inference when other algorithms are computationally impractical.

View on arXiv
Comments on this paper