ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.08015
36
2
v1v2v3v4 (latest)

Stability of Scattering Decoder For Nonlinear Diffractive Imaging

20 June 2018
Yu Sun
Ulugbek S. Kamilov
ArXiv (abs)PDFHTML
Abstract

The problem of image reconstruction under multiple light scattering is usually formulated as a regularized non-convex optimization. A deep learning architecture, Scattering Decoder (ScaDec), was recently proposed to solve this problem in a purely data-driven fashion. The proposed method was shown to substantially outperform optimization-based baselines and achieve state-of-the-art results. In this paper, we thoroughly test the robustness of ScaDec to different permittivity contrasts, number of transmissions, and input signal-to-noise ratios. The results on high-fidelity simulated datasets show that the performance of ScaDec is stable in different settings.

View on arXiv
Comments on this paper