ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.08619
8
17

Multi-task WaveNet: A Multi-task Generative Model for Statistical Parametric Speech Synthesis without Fundamental Frequency Conditions

22 June 2018
Yu Gu
Yongguo Kang
ArXivPDFHTML
Abstract

This paper introduces an improved generative model for statistical parametric speech synthesis (SPSS) based on WaveNet under a multi-task learning framework. Different from the original WaveNet model, the proposed Multi-task WaveNet employs the frame-level acoustic feature prediction as the secondary task and the external fundamental frequency prediction model for the original WaveNet can be removed. Therefore the improved WaveNet can generate high-quality speech waveforms only conditioned on linguistic features. Multi-task WaveNet can produce more natural and expressive speech by addressing the pitch prediction error accumulation issue and possesses more succinct inference procedures than the original WaveNet. Experimental results prove that the SPSS method proposed in this paper can achieve better performance than the state-of-the-art approach utilizing the original WaveNet in both objective and subjective preference tests.

View on arXiv
Comments on this paper