ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.08867
15
40

xGEMs: Generating Examplars to Explain Black-Box Models

22 June 2018
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
    MLAU
ArXivPDFHTML
Abstract

This work proposes xGEMs or manifold guided exemplars, a framework to understand black-box classifier behavior by exploring the landscape of the underlying data manifold as data points cross decision boundaries. To do so, we train an unsupervised implicit generative model -- treated as a proxy to the data manifold. We summarize black-box model behavior quantitatively by perturbing data samples along the manifold. We demonstrate xGEMs' ability to detect and quantify bias in model learning and also for understanding the changes in model behavior as training progresses.

View on arXiv
Comments on this paper