ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09529
36
9

Spiked covariances and principal components analysis in high-dimensional random effects models

25 June 2018
Z. Fan
Iain M. Johnstone
Yi Sun
ArXiv (abs)PDFHTML
Abstract

We study principal components analyses in multivariate random and mixed effects linear models, assuming a spherical-plus-spikes structure for the covariance matrix of each random effect. We characterize the behavior of outlier sample eigenvalues and eigenvectors of MANOVA variance components estimators in such models under a high-dimensional asymptotic regime. Our results show that an aliasing phenomenon may occur in high dimensions, in which eigenvalues and eigenvectors of the MANOVA estimate for one variance component may be influenced by the other components. We propose an alternative procedure for estimating the true principal eigenvalues and eigenvectors that asymptotically corrects for this aliasing problem.

View on arXiv
Comments on this paper