ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10050
10
15

Multi-Mapping Image-to-Image Translation with Central Biasing Normalization

26 June 2018
Xiaoming Yu
Zhenqiang Ying
Thomas Li
Shan Liu
Ge Li
    DiffM
ArXivPDFHTML
Abstract

Recent advances in image-to-image translation have seen a rise in approaches generating diverse images through a single network. To indicate the target domain for a one-to-many mapping, the latent code is injected into the generator network. However, we found that the injection method leads to mode collapse because of normalization strategies. Existing normalization strategies might either cause the inconsistency of feature distribution or eliminate the effect of the latent code. To solve these problems, we propose the consistency within diversity criteria for designing the multi-mapping model. Based on the criteria, we propose central biasing normalization to inject the latent code information. Experiments show that our method can improve the quality and diversity of existing image-to-image translation models, such as StarGAN, BicycleGAN, and pix2pix.

View on arXiv
Comments on this paper