ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10201
16
29

Neural Cross-Lingual Coreference Resolution and its Application to Entity Linking

26 June 2018
Gourab Kundu
Avirup Sil
Radu Florian
Wael Hamza
ArXivPDFHTML
Abstract

We propose an entity-centric neural cross-lingual coreference model that builds on multi-lingual embeddings and language-independent features. We perform both intrinsic and extrinsic evaluations of our model. In the intrinsic evaluation, we show that our model, when trained on English and tested on Chinese and Spanish, achieves competitive results to the models trained directly on Chinese and Spanish respectively. In the extrinsic evaluation, we show that our English model helps achieve superior entity linking accuracy on Chinese and Spanish test sets than the top 2015 TAC system without using any annotated data from Chinese or Spanish.

View on arXiv
Comments on this paper