ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.11096
51
30
v1v2 (latest)

Recovering Trees with Convex Clustering

28 June 2018
Eric C. Chi
Stefan Steinerberger
ArXiv (abs)PDFHTML
Abstract

Convex clustering refers, for given {x1,…,xn}⊂Rp\left\{x_1, \dots, x_n\right\} \subset \mathbb{R}^p{x1​,…,xn​}⊂Rp, to the minimization of \begin{eqnarray*} u(\gamma) & = & \underset{u_1, \dots, u_n }{\arg\min}\;\sum_{i=1}^{n}{\lVert x_i - u_i \rVert^2} + \gamma \sum_{i,j=1}^{n}{w_{ij} \lVert u_i - u_j\rVert},\\ \end{eqnarray*} where wij≥0w_{ij} \geq 0wij​≥0 is an affinity that quantifies the similarity between xix_ixi​ and xjx_jxj​. We prove that if the affinities wijw_{ij}wij​ reflect a tree structure in the {x1,…,xn}\left\{x_1, \dots, x_n\right\}{x1​,…,xn​}, then the convex clustering solution path reconstructs the tree exactly. The main technical ingredient implies the following combinatorial byproduct: for every set {x1,…,xn}⊂Rp\left\{x_1, \dots, x_n \right\} \subset \mathbb{R}^p{x1​,…,xn​}⊂Rp of n≥2n \geq 2n≥2 distinct points, there exist at least n/6n/6n/6 points with the property that for any of these points xxx there is a unit vector v∈Rpv \in \mathbb{R}^pv∈Rp such that, when viewed from xxx, `most' points lie in the direction vvv \begin{eqnarray*} \frac{1}{n-1}\sum_{i=1 \atop x_i \neq x}^{n}{ \left\langle \frac{x_i - x}{\lVert x_i - x \rVert}, v \right\rangle} & \geq & \frac{1}{4}. \end{eqnarray*}

View on arXiv
Comments on this paper