Quasi-Monte Carlo (QMC) methods for estimating integrals are attractive since the resulting estimators converge at a faster rate than pseudo-random Monte Carlo. However, they can be difficult to set up on arbitrary posterior densities within the Bayesian framework, in particular for inverse problems. We introduce a general parallel Markov chain Monte Carlo (MCMC) framework, for which we prove a law of large numbers and a central limit theorem. We further extend this approach to the use of adaptive kernels and state conditions, under which ergodicity holds. As a further extension, an importance sampling estimator is derived, for which asymptotic unbiasedness is proven. We consider the use of completely uniformly distributed (CUD) numbers and non-reversible transitions within the above stated methods, which leads to a general parallel quasi-MCMC (QMCMC) methodology. We prove consistency of the resulting estimators and demonstrate numerically that this approach scales close to as we increase parallelisation, instead of the usual that is typical of standard MCMC algorithms. In practical statistical models we observe up to 2 orders of magnitude improvement compared with pseudo-random methods.
View on arXiv