ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01394
127
139
v1v2v3v4 (latest)

ModaNet: A Large-Scale Street Fashion Dataset with Polygon Annotations

3 July 2018
Shuai Zheng
Fan Yang
M. Kiapour
Robinson Piramuthu
ArXiv (abs)PDFHTMLGithub (350★)
Abstract

Understanding clothes from a single image has strong commercial and cultural impacts on modern societies. However, this task remains a challenging computer vision problem due to wide variations in the appearance, style, brand and layering of clothing items. We present a new database called ModaNet, a large-scale collection of images based on Paperdoll dataset. Our dataset provides 55,176 street images, fully annotated with polygons on top of the 1 million weakly annotated street images in Paperdoll. ModaNet aims to provide a technical benchmark to fairly evaluate the progress of applying the latest computer vision techniques that rely on large data for fashion understanding. The rich annotation of the dataset allows to measure the performance of state-of-the-art algorithms for object detection, semantic segmentation and polygon prediction on street fashion images in detail. The polygon-based annotation dataset has been released https://github.com/eBay/modanet, we also host the leaderboard at EvalAI: https://evalai.cloudcv.org/featured-challenges/136/overview.

View on arXiv
Comments on this paper