ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01702
16
62

Restructuring Batch Normalization to Accelerate CNN Training

4 July 2018
Wonkyung Jung
Daejin Jung
and Byeongho Kim
Sunjung Lee
Wonjong Rhee
Jung Ho Ahn
ArXivPDFHTML
Abstract

Batch Normalization (BN) has become a core design block of modern Convolutional Neural Networks (CNNs). A typical modern CNN has a large number of BN layers in its lean and deep architecture. BN requires mean and variance calculations over each mini-batch during training. Therefore, the existing memory access reduction techniques, such as fusing multiple CONV layers, are not effective for accelerating BN due to their inability to optimize mini-batch related calculations during training. To address this increasingly important problem, we propose to restructure BN layers by first splitting a BN layer into two sub-layers (fission) and then combining the first sub-layer with its preceding CONV layer and the second sub-layer with the following activation and CONV layers (fusion). The proposed solution can significantly reduce main-memory accesses while training the latest CNN models, and the experiments on a chip multiprocessor show that the proposed BN restructuring can improve the performance of DenseNet-121 by 25.7%.

View on arXiv
Comments on this paper