ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03006
29
20

A Sequence-to-Sequence Model for Semantic Role Labeling

9 July 2018
Angel Daza
Anette Frank
ArXivPDFHTML
Abstract

We explore a novel approach for Semantic Role Labeling (SRL) by casting it as a sequence-to-sequence process. We employ an attention-based model enriched with a copying mechanism to ensure faithful regeneration of the input sequence, while enabling interleaved generation of argument role labels. Here, we apply this model in a monolingual setting, performing PropBank SRL on English language data. The constrained sequence generation set-up enforced with the copying mechanism allows us to analyze the performance and special properties of the model on manually labeled data and benchmarking against state-of-the-art sequence labeling models. We show that our model is able to solve the SRL argument labeling task on English data, yet further structural decoding constraints will need to be added to make the model truly competitive. Our work represents a first step towards more advanced, generative SRL labeling setups.

View on arXiv
Comments on this paper