ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03595
14
13

Revisiting the Hierarchical Multiscale LSTM

10 July 2018
Ákos Kádár
Marc-Alexandre Côté
Grzegorz Chrupała
A. Alishahi
ArXivPDFHTML
Abstract

Hierarchical Multiscale LSTM (Chung et al., 2016a) is a state-of-the-art language model that learns interpretable structure from character-level input. Such models can provide fertile ground for (cognitive) computational linguistics studies. However, the high complexity of the architecture, training procedure and implementations might hinder its applicability. We provide a detailed reproduction and ablation study of the architecture, shedding light on some of the potential caveats of re-purposing complex deep-learning architectures. We further show that simplifying certain aspects of the architecture can in fact improve its performance. We also investigate the linguistic units (segments) learned by various levels of the model, and argue that their quality does not correlate with the overall performance of the model on language modeling.

View on arXiv
Comments on this paper