ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.04975
17
822

Recognition in Terra Incognita

13 July 2018
Sara Beery
Grant Van Horn
Pietro Perona
ArXivPDFHTML
Abstract

It is desirable for detection and classification algorithms to generalize to unfamiliar environments, but suitable benchmarks for quantitatively studying this phenomenon are not yet available. We present a dataset designed to measure recognition generalization to novel environments. The images in our dataset are harvested from twenty camera traps deployed to monitor animal populations. Camera traps are fixed at one location, hence the background changes little across images; capture is triggered automatically, hence there is no human bias. The challenge is learning recognition in a handful of locations, and generalizing animal detection and classification to new locations where no training data is available. In our experiments state-of-the-art algorithms show excellent performance when tested at the same location where they were trained. However, we find that generalization to new locations is poor, especially for classification systems.

View on arXiv
Comments on this paper