ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.04978
22
38

Hybrid CTC-Attention based End-to-End Speech Recognition using Subword Units

13 July 2018
Zhangyu Xiao
Zhijian Ou
Wei Chu
Hui-Ching Lin
ArXivPDFHTML
Abstract

In this paper, we present an end-to-end automatic speech recognition system, which successfully employs subword units in a hybrid CTC-Attention based system. The subword units are obtained by the byte-pair encoding (BPE) compression algorithm. Compared to using words as modeling units, using characters or subword units does not suffer from the out-of-vocabulary (OOV) problem. Furthermore, using subword units further offers a capability in modeling longer context than using characters. We evaluate different systems over the LibriSpeech 1000h dataset. The subword-based hybrid CTC-Attention system obtains 6.8% word error rate (WER) on the test_clean subset without any dictionary or external language model. This represents a significant improvement (a 12.8% WER relative reduction) over the character-based hybrid CTC-Attention system.

View on arXiv
Comments on this paper