15
0

Learning Graph Representations by Dendrograms

Abstract

Hierarchical graph clustering is a common technique to reveal the multi-scale structure of complex networks. We propose a novel metric for assessing the quality of a hierarchical clustering. This metric reflects the ability to reconstruct the graph from the dendrogram, which encodes the hierarchy. The optimal representation of the graph defines a class of reducible linkages leading to regular dendrograms by greedy agglomerative clustering.

View on arXiv
Comments on this paper