ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.08194
15
41

Towards Distributed Coevolutionary GANs

21 July 2018
Abdullah Al-Dujaili
Tom Schmiedlechner
Erik Hemberg
Una-May O’Reilly
    GAN
ArXivPDFHTML
Abstract

Generative Adversarial Networks (GANs) have become one of the dominant methods for deep generative modeling. Despite their demonstrated success on multiple vision tasks, GANs are difficult to train and much research has been dedicated towards understanding and improving their gradient-based learning dynamics. Here, we investigate the use of coevolution, a class of black-box (gradient-free) co-optimization techniques and a powerful tool in evolutionary computing, as a supplement to gradient-based GAN training techniques. Experiments on a simple model that exhibits several of the GAN gradient-based dynamics (e.g., mode collapse, oscillatory behavior, and vanishing gradients) show that coevolution is a promising framework for escaping degenerate GAN training behaviors.

View on arXiv
Comments on this paper