ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.08241
11
22

NAVREN-RL: Learning to fly in real environment via end-to-end deep reinforcement learning using monocular images

22 July 2018
Malik Aqeel Anwar
A. Raychowdhury
ArXivPDFHTML
Abstract

We present NAVREN-RL, an approach to NAVigate an unmanned aerial vehicle in an indoor Real ENvironment via end-to-end reinforcement learning RL. A suitable reward function is designed keeping in mind the cost and weight constraints for micro drone with minimum number of sensing modalities. Collection of small number of expert data and knowledge based data aggregation is integrated into the RL process to aid convergence. Experimentation is carried out on a Parrot AR drone in different indoor arenas and the results are compared with other baseline technologies. We demonstrate how the drone successfully avoids obstacles and navigates across different arenas.

View on arXiv
Comments on this paper