ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.09499
10
345

How good is my GAN?

25 July 2018
K. Shmelkov
Cordelia Schmid
Alahari Karteek
    GAN
    EGVM
ArXivPDFHTML
Abstract

Generative adversarial networks (GANs) are one of the most popular methods for generating images today. While impressive results have been validated by visual inspection, a number of quantitative criteria have emerged only recently. We argue here that the existing ones are insufficient and need to be in adequation with the task at hand. In this paper we introduce two measures based on image classification---GAN-train and GAN-test, which approximate the recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate a number of recent GAN approaches based on these two measures and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures.

View on arXiv
Comments on this paper