Effects of Degradations on Deep Neural Network Architectures
Recently, image classification methods based on capsules (groups of neurons) and a novel dynamic routing protocol are proposed. The methods show promising performances than the state-of-the-art CNN-based models in some of the existing datasets. However, the behavior of capsule-based models and CNN-based models are largely unknown in presence of noise. So it is important to study the performance of these models under various noises. In this paper, we demonstrate the effect of image degradations on deep neural network architectures for image classification task. We select six widely used CNN architectures to analyse their performances for image classification task on datasets of various distortions. Our work has three main contributions: 1) we observe the effects of degradations on different CNN models; 2) accordingly, we propose a network setup that can enhance the robustness of any CNN architecture for certain degradations, and 3) we propose a new capsule network that achieves high recognition accuracy. To the best of our knowledge, this is the first study on the performance of CapsuleNet (CapsNet) and other state-of-the-art CNN architectures under different types of image degradations. Also, our datasets and source code are available publicly to the researchers.
View on arXiv