ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.10495
19
51
v1v2 (latest)

Enhanced Machine Learning Techniques for Early HARQ Feedback Prediction in 5G

27 July 2018
Nils Strodthoff
B. Göktepe
Thomas Schierl
C. Hellge
Wojciech Samek
ArXiv (abs)PDFHTML
Abstract

We investigate Early Hybrid Automatic Repeat reQuest (E-HARQ) feedback schemes enhanced by machine learning techniques as a path towards ultra-reliable and low-latency communication (URLLC). To this end, we propose machine learning methods to predict the outcome of the decoding process ahead of the end of the transmission. We discuss different input features and classification algorithms ranging from traditional methods to newly developed supervised autoencoders. These methods are evaluated based on their prospects of complying with the URLLC requirements of effective block error rates below 10−510^{-5}10−5 at small latency overheads. We provide realistic performance estimates in a system model incorporating scheduling effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths, channel conditions and system loads, and show the benefit over regular HARQ and existing E-HARQ schemes without machine learning.

View on arXiv
Comments on this paper