ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.11649
29
195

The Devil of Face Recognition is in the Noise

31 July 2018
Fei Wang
Liren Chen
Cheng Li
Shiyao Huang
Yanjie Chen
Chao Qian
Chen Change Loy
    NoLa
ArXivPDFHTML
Abstract

The growing scale of face recognition datasets empowers us to train strong convolutional networks for face recognition. While a variety of architectures and loss functions have been devised, we still have a limited understanding of the source and consequence of label noise inherent in existing datasets. We make the following contributions: 1) We contribute cleaned subsets of popular face databases, i.e., MegaFace and MS-Celeb-1M datasets, and build a new large-scale noise-controlled IMDb-Face dataset. 2) With the original datasets and cleaned subsets, we profile and analyze label noise properties of MegaFace and MS-Celeb-1M. We show that a few orders more samples are needed to achieve the same accuracy yielded by a clean subset. 3) We study the association between different types of noise, i.e., label flips and outliers, with the accuracy of face recognition models. 4) We investigate ways to improve data cleanliness, including a comprehensive user study on the influence of data labeling strategies to annotation accuracy. The IMDb-Face dataset has been released on https://github.com/fwang91/IMDb-Face.

View on arXiv
Comments on this paper