ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.01426
17
1

Abstractive Summarization Improved by WordNet-based Extractive Sentences

4 August 2018
Niantao Xie
Sujian Li
Huiling Ren
Qibin Zhai
ArXivPDFHTML
Abstract

Recently, the seq2seq abstractive summarization models have achieved good results on the CNN/Daily Mail dataset. Still, how to improve abstractive methods with extractive methods is a good research direction, since extractive methods have their potentials of exploiting various efficient features for extracting important sentences in one text. In this paper, in order to improve the semantic relevance of abstractive summaries, we adopt the WordNet based sentence ranking algorithm to extract the sentences which are most semantically to one text. Then, we design a dual attentional seq2seq framework to generate summaries with consideration of the extracted information. At the same time, we combine pointer-generator and coverage mechanisms to solve the problems of out-of-vocabulary (OOV) words and duplicate words which exist in the abstractive models. Experiments on the CNN/Daily Mail dataset show that our models achieve competitive performance with the state-of-the-art ROUGE scores. Human evaluations also show that the summaries generated by our models have high semantic relevance to the original text.

View on arXiv
Comments on this paper