ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.02194
11
143

Quantized Densely Connected U-Nets for Efficient Landmark Localization

7 August 2018
Zhiqiang Tang
Xi Peng
Shijie Geng
Lingfei Wu
Shaoting Zhang
Dimitris N. Metaxas
    3DV
ArXivPDFHTML
Abstract

In this paper, we propose quantized densely connected U-Nets for efficient visual landmark localization. The idea is that features of the same semantic meanings are globally reused across the stacked U-Nets. This dense connectivity largely improves the information flow, yielding improved localization accuracy. However, a vanilla dense design would suffer from critical efficiency issue in both training and testing. To solve this problem, we first propose order-K dense connectivity to trim off long-distance shortcuts; then, we use a memory-efficient implementation to significantly boost the training efficiency and investigate an iterative refinement that may slice the model size in half. Finally, to reduce the memory consumption and high precision operations both in training and testing, we further quantize weights, inputs, and gradients of our localization network to low bit-width numbers. We validate our approach in two tasks: human pose estimation and face alignment. The results show that our approach achieves state-of-the-art localization accuracy, but using ~70% fewer parameters, ~98% less model size and saving ~75% training memory compared with other benchmark localizers. The code is available at https://github.com/zhiqiangdon/CU-Net.

View on arXiv
Comments on this paper