ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.02334
11
28

A novel topology design approach using an integrated deep learning network architecture

3 August 2018
Sharad Rawat
M. Shen
    AI4CE
ArXivPDFHTML
Abstract

Topology design optimization offers tremendous opportunity in design and manufacturing freedoms by designing and producing a part from the ground-up without a meaningful initial design as required by conventional shape design optimization approaches. Ideally, with adequate problem statements, to formulate and solve the topology design problem using a standard topology optimization process, such as SIMP (Simplified Isotropic Material with Penalization) is possible. In reality, an estimated over thousands of design iterations is often required for just a few design variables, the conventional optimization approach is in general impractical or computationally unachievable for real world applications significantly diluting the development of the topology optimization technology. There is, therefore, a need for a different approach that will be able to optimize the initial design topology effectively and rapidly. Therefore, this work presents a new topology design procedure to generate optimal structures using an integrated Generative Adversarial Networks (GANs) and convolutional neural network architecture.

View on arXiv
Comments on this paper