ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03001
31
28
v1v2v3 (latest)

Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions

9 August 2018
M. Lotfi
M. Vidyasagar
    MQ
ArXiv (abs)PDFHTML
Abstract

In this paper, we study the problem of compressed sensing using binary measurement matrices and ℓ1\ell_1ℓ1​-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions % sparsity bounds for robust sparse recovery obtained using the RNSP are better by a factor of (33)/2≈2.6(3 \sqrt{3})/2 \approx 2.6(33​)/2≈2.6 compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal \textit{lower} bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal". So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. \end{abstract}

View on arXiv
Comments on this paper