ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03485
8
49

Deep Learning Based Speed Estimation for Constraining Strapdown Inertial Navigation on Smartphones

10 August 2018
Santiago Cortés Reina
Arno Solin
Arno Solin
ArXivPDFHTML
Abstract

Strapdown inertial navigation systems are sensitive to the quality of the data provided by the accelerometer and gyroscope. Low-grade IMUs in handheld smart-devices pose a problem for inertial odometry on these devices. We propose a scheme for constraining the inertial odometry problem by complementing non-linear state estimation by a CNN-based deep-learning model for inferring the momentary speed based on a window of IMU samples. We show the feasibility of the model using a wide range of data from an iPhone, and present proof-of-concept results for how the model can be combined with an inertial navigation system for three-dimensional inertial navigation.

View on arXiv
Comments on this paper