ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.04776
278
205
v1v2 (latest)

Retrieve and Refine: Improved Sequence Generation Models For Dialogue

14 August 2018
Jason Weston
Emily Dinan
Alexander H. Miller
    RALM
ArXiv (abs)PDFHTML
Abstract

Sequence generation models for dialogue are known to have several problems: they tend to produce short, generic sentences that are uninformative and unengaging. Retrieval models on the other hand can surface interesting responses, but are restricted to the given retrieval set leading to erroneous replies that cannot be tuned to the specific context. In this work we develop a model that combines the two approaches to avoid both their deficiencies: first retrieve a response and then refine it -- the final sequence generator treating the retrieval as additional context. We show on the recent CONVAI2 challenge task our approach produces responses superior to both standard retrieval and generation models in human evaluations.

View on arXiv
Comments on this paper