ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05924
47
5
v1v2v3 (latest)

A Projector-Based Approach to Quantifying Total and Excess Uncertainties for Sketched Linear Regression

17 August 2018
Jocelyn T. Chi
Ilse C. F. Ipsen
ArXiv (abs)PDFHTML
Abstract

Linear regression is a classic method of data analysis. In recent years, sketching -- a method of dimension reduction using random sampling, random projections, or both -- has gained popularity as an effective computational approximation when the number of observations greatly exceeds the number of variables. In this paper, we address the following question: How does sketching affect the statistical properties of the solution and key quantities derived from it? To answer this question, we present a projector-based approach to sketched linear regression that is exact and that requires minimal assumptions on the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design of judicious sketching schemes.

View on arXiv
Comments on this paper