ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.07249
81
0
v1v2 (latest)

Analysis of Network Lasso For Semi-Supervised Regression

22 August 2018
A. Jung
ArXiv (abs)PDFHTML
Abstract

We characterize the statistical properties of network Lasso for semi-supervised regression problems involving network- structured data. This characterization is based on the con- nectivity properties of the empirical graph which encodes the similarities between individual data points. Loosely speaking, network Lasso is accurate if the available label informa- tion is well connected with the boundaries between clusters of the network-structure datasets. We make this property precise using the notion of network flows. In particular, the existence of a sufficiently large network flow over the empirical graph implies a network compatibility condition which, in turn, en- sures accuracy of network Lasso.

View on arXiv
Comments on this paper