ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.10143
16
36

Direct Output Connection for a High-Rank Language Model

30 August 2018
Sho Takase
Jun Suzuki
Masaaki Nagata
ArXivPDFHTML
Abstract

This paper proposes a state-of-the-art recurrent neural network (RNN) language model that combines probability distributions computed not only from a final RNN layer but also from middle layers. Our proposed method raises the expressive power of a language model based on the matrix factorization interpretation of language modeling introduced by Yang et al. (2018). The proposed method improves the current state-of-the-art language model and achieves the best score on the Penn Treebank and WikiText-2, which are the standard benchmark datasets. Moreover, we indicate our proposed method contributes to two application tasks: machine translation and headline generation. Our code is publicly available at: https://github.com/nttcslab-nlp/doc_lm.

View on arXiv
Comments on this paper