ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.00095
14
31

Learning Sparse Low-Precision Neural Networks With Learnable Regularization

1 September 2018
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
    MQ
ArXivPDFHTML
Abstract

We consider learning deep neural networks (DNNs) that consist of low-precision weights and activations for efficient inference of fixed-point operations. In training low-precision networks, gradient descent in the backward pass is performed with high-precision weights while quantized low-precision weights and activations are used in the forward pass to calculate the loss function for training. Thus, the gradient descent becomes suboptimal, and accuracy loss follows. In order to reduce the mismatch in the forward and backward passes, we utilize mean squared quantization error (MSQE) regularization. In particular, we propose using a learnable regularization coefficient with the MSQE regularizer to reinforce the convergence of high-precision weights to their quantized values. We also investigate how partial L2 regularization can be employed for weight pruning in a similar manner. Finally, combining weight pruning, quantization, and entropy coding, we establish a low-precision DNN compression pipeline. In our experiments, the proposed method yields low-precision MobileNet and ShuffleNet models on ImageNet classification with the state-of-the-art compression ratios of 7.13 and 6.79, respectively. Moreover, we examine our method for image super resolution networks to produce 8-bit low-precision models at negligible performance loss.

View on arXiv
Comments on this paper