ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.01477
33
12

A Supervised Learning Approach For Heading Detection

31 August 2018
S. Budhiraja
Vijay K. Mago
ArXiv (abs)PDFHTML
Abstract

As the Portable Document Format (PDF) file format increases in popularity, research in analysing its structure for text extraction and analysis is necessary. Detecting headings can be a crucial component of classifying and extracting meaningful data. This research involves training a supervised learning model to detect headings with features carefully selected through recursive feature elimination. The best performing classifier had an accuracy of 96.95%, sensitivity of 0.986 and a specificity of 0.953. This research into heading detection contributes to the field of PDF based text extraction and can be applied to the automation of large scale PDF text analysis in a variety of professional and policy based contexts.

View on arXiv
Comments on this paper