ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.03118
11
7

A Deep Reinforced Sequence-to-Set Model for Multi-Label Text Classification

10 September 2018
Pengcheng Yang
Shuming Ma
Y. Zhang
Junyang Lin
Qi Su
Xu Sun
    VLM
ArXivPDFHTML
Abstract

Multi-label text classification (MLTC) aims to assign multiple labels to each sample in the dataset. The labels usually have internal correlations. However, traditional methods tend to ignore the correlations between labels. In order to capture the correlations between labels, the sequence-to-sequence (Seq2Seq) model views the MLTC task as a sequence generation problem, which achieves excellent performance on this task. However, the Seq2Seq model is not suitable for the MLTC task in essence. The reason is that it requires humans to predefine the order of the output labels, while some of the output labels in the MLTC task are essentially an unordered set rather than an ordered sequence. This conflicts with the strict requirement of the Seq2Seq model for the label order. In this paper, we propose a novel sequence-to-set framework utilizing deep reinforcement learning, which not only captures the correlations between labels, but also reduces the dependence on the label order. Extensive experimental results show that our proposed method outperforms the competitive baselines by a large margin.

View on arXiv
Comments on this paper